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Non-Newtonian Fluids - Overview

A. Simple Classifications of Fluids

1.

Shear-Dependent Fluids

a. Newtonian dv
\ _ X

(obeys Newton's )2 T T=u d
Law of viscosity) Y

dVX/ dy de/ dy

~

] .1
. Bingham Plastics - T=Uo & + T,
(ideal plastic) J7i Ho Jor ttl> 1,
dvy g
—_— (—{‘— =0 for t|< T,

dwl/dy dv/dy

. Pseudoplastic k
(molecules line up n T
once flow begins) Can be fit with the
Power Law

dw/dy dvy/dy % n

T=K|dy

OR with other
. Dilatant models
(particle suspensions n T
collide when flow
begins)

dvy/dy dvy/dy

Reminder: Graduate texts write Newton’s Law as 7= -u dv /dy
More complex models

1) Powell-Eyring Model (based on Eyring's theories of the molecular “structure”

of liquids)
T=A vy + lsinh‘1 1, dvy
dy B C dy

i1) Ellis Model (purely empirical)
1 dv,

T=—"—"p7%
A+Bt dy
ii1) Reiner-Phillipoff Model (purely empirical)

o=l A+ B—A2 dv,
1+(T/C)°) dy

iv) For each of these, the three arbitrary constants (A, B, and C) are adjusted to fit the
data.
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2. Time-Dependent Fluids

a.
b.

motion causes aggregation

/— Rheopectic { or unraveling of molecules
. ) motion causes re-coiling or
\ Thixotropic { g

fragmenting of molecules

time
The changes occur mostly within the first 60 seconds

Description of these fluids is extremely difficult.

3. Viscoelastic Fluids

a.
b.

C.

Exhibit elastic “recovery” from deformations which occur during flow

Also exhibit “plastic” (permanent) deformation

Modeled using simple spring-dashpot elements and combinations of those elements

A

Y Y

Maxwell Element Kelvin or Voigt Element

B. Observations

1.

Non-Newtonian behavior is usually seen when the fluid is composed of small carrier
molecules and larger suspended molecules or particles.

G ™ O & 0 o P

Bingham Fluids: Coal slurries, grain slurries, sewage sludge

Pseudoplastic Fluids: Polymer melts, paper pulp suspensions, pigment suspensions
Dilatant Fluids: Starch suspensions, mica suspensions, quicksand

Thixotropic Fluids: Mayonnaise, drilling mud, paint, ink

Rheopectic Fluids: Gypsum suspensions in water, vanadium pentoxide sols
Viscoelastic Fluids: Polymeric liquids

Other: Yield Pseudoplastic Fluid: Blood

Non-Newtonian fluids exhibit laminar and turbulent flow regimes, with a transition
between those regimes.

. Equations for Newtonian fluids can't be used, because there is no single value of

“viscosity” for such fluids.

e.g. Can’t calculate the Reynolds number using the Newtonian definition
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4. We often talk about an “apparent viscosity” (1)) where

dv
T = = 1
T (1)
a. For example for a power-law fluid
n
= k| D )
dy
so, for such a fluid
dv n-1
- K| &= 3
! ( dy ) ©

b. The apparent viscosity varies with shear rate, as plotted on page 1.

II. Describing Non-Newtonian Laminar Flow in Horizontal Cylindrical Pipes

A. Describing the Wall Shear Stress (all fluids)
1. Asin Class 16, we can begin with the Equation of Motion to derive
- l(P 1= 5
L

T,, 5 + pgsin a)r 4

2. For horizontal pipes
r Pl — P2 r dP
T = — - 5

3. At the wall

D dp
T, =—— 6
v (6)

(which has a negative value, because it acts in the —z direction)

B. Velocity Profile and Flowrate

1. For laminar flow, we could introduce the rheological equation into The Equation of
Motion (or into Equation (5) above) and integrate to get v,(r).

Example: For a Power-Law fluid, Cengel’s convention for shear stress gives

—1. =K de |n =K(_&)n
~ dr | dr

*Combining with Equation (5), integrating, and applying the no-slip condition gives
1
-dP 1 n

n
¢ ( dz 2K ) n+l
*The volumetric flow rate becomes

1
-dP D \n mnD?
Qz(d_zﬁ) 8(3n+1) ®

n+l n+l

R (7)
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*And, finally (see the Appendices to these notes),
3n+1 3(3n + 1)

= and a= )
2n+1 Gn+3)2n+1)
2. For other types of non-Newtonian fluids, the math often becomes very complex.
C. How can we apply these concepts to typical pipeflow data (-dP/dz vs. v,,,)?
A General Approach, Using Newtonian Fluids in Laminar Flow as a Model
1. The velocity profile for a Newtonian fluid is
2 2
r r
Vz = Vmax (1 - F) = 2vavg(1 - F) (10)
2. So the shear rate is
. dv 2r 4y avg”
Y=_d_;=_zvavg(_p)= RZ (11)
3. At the wall
y 4Vavg 8van (12)
" TR "D
4. For a Newtonian fluid, a short-hand way to write Newton’s Law is
T, =Wy, (13)
8v
so plotting 7,, vs. —= gives a straight line of slope = u
5. But
D dpP .
T, =——" (from Equation 6) and
4 dz
. 8v,, . )
Y = D (from Equation 12)

. D dP Vave . . . . .
So plotting ——— vs —— for various diameters gives a straight line of slope = u

6. Non-Newtonian fluids can be plotted on that same plot (gives a generalized way of
representing all fluids in laminar flow).

Bingham
Pseudoplastic

Newtonian

D (~dP
Z dz Dilatant

8 Vavg



Chemical Engineering 374 - Class 35 page 5

D. How do we design flow systems for a Power-Law fluid in laminar flow?

1. From Equation 8,

1
v (—dP A)n D’
dz 4K) 80Bn+1)
Solving for pressure drop:

-dP _ V-M]”“_K _ _P-p
dz mD’ | D L
But the mechanical energy equation uses AP/p, so
P,-PB (Pz—Pl)é _ [V8(3n+l)]" 4KL
0 L )p mD’ | Dp
2. Finally, from the mechanical energy equation for a horizontal pipe,
P, 2~ Pl
- = W
p
3. So for laminar pipe flow of a power-law fluid,
. D] 4KL
w, = [V 8(3n +3 )
' ainD Dp

which can be used with the mechanical energy equation for any applicable piping system.
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Appendix 1 — f3 for a Power-Law Fluid in Laminar Pipe Flow

1
— 3
0 = f f vdA = (—i—f%)n :Zfl (see Equation 8 of these notes)
P 1\ mlooa
ffvz dA = ff (_d_ﬁ)n " 1 Rn»n —pn rdrdo (see Equation 7 of these notes)
Z n+

where

R n+l n+l 2 R ) Ll (4l 5,2
7 7 2+= +- 14+~ +=
fR” —-rn rdr = f(R n_2R ny n4r ”)rdr
0

0
2
_ R2+%ﬁ_2Rl+%r +’l; +4_+"2
2 3+ 4+
0
RY'r o' g 4+2[1 2n n
= + = R "[—- +
2 3+ 442 2 3n+l 4n+2
which, after some math, gives
2
42 (n+1)
- (3n+1)(4n+2)
-dP 1 ; 2 42 (n+1)2
So f v2dA = ZW(——)H( " )R i
dz 2K n+l1 (3n+1)(4n+2)
2
Mﬂg)n n’
dz 4K (3n+1)(2n+1)
2
4(-dP D \n n®
fvsz R dz 4K (3n+1)(2n+1) 3n+1
Finally, p = A>— = nR? . -
[f VdA] (_dPD)n J_CZnZR6 n+
dz 4K) (3n+1)°
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Appendix 2 — o for a Power-Law Fluid in Laminar Pipe Flow

1
— 3
0 = f f vdA = (—i—f%)n :Zfl (see Equation 8 of these notes)
Pl ml ol
f v dA = ff (_d_g)n Ll Rn —pn rdr do (see Equation 7 of these notes)
Z n+

where

0
;1R
_ R3+%ﬁ_3R2+% r :’1 3Rl+i1 r 3‘2 _ 7‘5+3
2 +- 4+ S5+
0
R5+% 3R5+ 3RS+3 R5+%
= —_— + -
2 3+1 442 543
n n n
5+3[1 3n 3n n
= R n|—- + -
2 3n+l 4n+2 5n+3
which, after some math, gives
543 3(n+ 1)3
= R Tn
(3n + l)(4n + 2)(5n + 3)
3
o o e e
dz 2K) \n+1 (3n + 1)(4n + 2)(5n + 3))
3
_ nRs(ﬂﬂ)n 3n’
dz 4K (3n + 1)(2n + 1)(5n + 3)
Finally,
3
5(—dP D ) 3n>
3 T 2
22 ffv dA 2p dz 4K) (3n+1)(2n+1)(5n+3) 3(3n+1)
o = Y = =
(2n+1)(5n + 3)

NE dAT ( dP D )2 (n3n31t”

dz 4K) (3n+1)°
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I. More On Non-Newtonian Laminar Flow in Horizontal Cylindrical Pipes

A. Determining Values of the Rheological Parameters

1.

We can measure flow rate and pressure drop through a pipeline... So how do we
determine the values of rheological parameters?

We can show (appendix for these notes) that, for all non-Newtonian fluids

) 3 1 dn&
_g2, 275 1
WS T din, )
. dv, 8V g D( dP
where Y = _E , &= D and TW=Z _d_z
w

. Equation 1, called the Rabinowitsch-Mooney equation, works for most time-

independent non-Newtonian fluids in laminar flow in cylindrical pipes.

a. From data of flow rate and pressure drop, § and t,, can be calculated for each
condition (data point)

b. A plotof In 7, vs. In § will produce
dlnt,

dIn&
which can be inserted into the right-hand bracket of Equation 1.

c. The wall shear rate can then be determined for each data point.

W

. dIn S . .
d. Equation 1 suggests that provides important information.

The values of rheologic parameters can also be found from plots involving 7, and & .

dint,

=1.
din &

a. For Newtonian fluids,

1) Why is this so?
Hint: How does 7, depend on §? To find out...
How does 1, depend on y?

How does 7 depend on &7

. dv, 8v,, ..

Y, =-——== =& (Now, you finish the story.)
dr D

ii) So, what kind of plot of the data would tell us p?



Chemical Engineering 374 - Class 36 page 2

dint,

dIn&

b. For Power-Law fluids,

1) Why is this so?
Hint: How does 7, depend on §? To find out...
How does T, depend on y?

How does 7 depend on &7

N
. 7, 1" dp D"
o -
ap D" wmD* . D’
) [_d_zﬁ] sGn+l)  "8(Gn+1)
8(3n+1)V 4V 83n+1  8v,3n+l  _3n+l
T T D T a'D 4n D 4n | am

(Now, you finish the story.)

ii) So, what kind of plot of the data would tell us n?

ii1) Would all data sets (all pipe diameters, etc.) give the same value of n?

iv) Once we know the value of n, can we determine the value of K? How?

v) What are the units of K?
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) . 1 . )
For other Non-Newtonians fluids, ililrg may be a simple function, and we may be
n

able to do the same kind of analysis to determine values of rheologic parameters.

B. When Does Flow Become Non-Laminar?

1.

2. But, for non-Newtonian fluids, there is no “u”.

For Newtonian fluids: when Reynolds Number (Dvo/u) > ~2100

(13 2

3. For horizontal, cylindrical pipes,

AP v
—- —f—— @)
p
Rearranging DAP 8 .
S Al 3)

4 L pv pv

For Power-Law Fluids

a.

By definition

. 8Vg 3n+1) (8v)
w=K(@,)" = K(ﬂ ) ~K|—% (approximate derivation) (4)

D 4n D
We can substitute into Equation 3 to obtain
8v 8
f= K( ) — 5)
D) pv
Finally, if we assume that for laminar flow, f=64/Re (from Newtonian fluid)
64 D"pv>"
Re ~ e 6)
( 8v\" K8
K ) =
\D pv

It turns out that when this “Generalized” Reynolds number (for Power-Law Fluids)
exceeds ~2100, the flow of Power-Law fluids departs from laminar behavior.

_dar D ! 1 [_ ar 2] |
dz 4 l dz 4 l
Laminar : Turbulent Laminar ! Turbulent
Region | Region Region : Region
8Vavg l:gvav ]
D

Caution: The location of the turbulent break-off point in the above graph varies
with pipe diameter.

5. For other kinds of fluids, Equations 4-6 can be re-derived for the particular fluid in
question, resulting in a special formulation of the Reynolds number for that fluid.
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II. Describing Non-Newtonian Turbulent Flow in Horizontal Cylindrical Pipes

A. Empirical Friction-Factor Charts Are Used
The following gives franning = fparcy/4 for Power-Law Fluids.

(From N. de Nevers, Fluid Mechanics, Addison Wesley, 1970.)

Friction factor

0.05
N
N
\\
0.01 \\
[~ .
T ~ ] 1>Iewton1an
\ S va
N ‘\ '~ 1§ [~ \\\
AN ] C
N\~ L~ [~ n=0.8 n=1.0
N o =006
\\ N ~ n=0.4 S o
N N | N
N N ~ ~
~ N o ~
N S o . Il
AN N n=0.75
N N
So| TYon=06
n=0.53 | So
N RS
0.001 o 5
500 1000 10 10

Reynolds number as defined by Equation 6

B. The solid lines in the above graph are for slurries and some polymer solutions.
(From the data of Dodge and Metzner, AIChE J. 5:189, 1959.)

C.

The dotted lines are for some polymer solutions and polymer melts, particularly those

which show viscoelastic behavior (like rubber cement), which suppress turbulence
(From the data of Shaver and Merrill, AIChE J. 5:181, 1959.)

1.

2.

With these fluids, much less turbulence is seen, and friction is reduced.

Apparently, the long molecules of these fluids absorb energy and damp out turbulent
fluctuations.

Tiny amounts (as little as 0.01 wt%) of such polymers in water reduce friction 50%.

Such pressure-loss-reduction additives are commonly used in the industry (e.g. the
petroleum industry).

The friction factor from the above graph is used in a similar way as for Newtonian fluid
(wp=4f L/D v2/2, used in the mechanical energy equation as always).
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Appendix - Derivation of the Rabinowitsch-Mooney Equation

. From the definition of the volumetric flow rate

R 2n R

V=ffvrd6dr=2nfvrdr
00 0

: Butfxdy=xy—fydx,andifwelet dy =rdr (so y=r’), then

. vr? o 1
V=2n|—| —— frzdv
2 r=0 2 r=0

r=R
=-7 f ridv
r=0

. We can write this as

. R dV R
Vv =—nfr2(d—) dr=:rcfr2}'/dr
0

0 r

. From the last class,

r dP D dP
T,=——— and 7T, =-——
2 dz 4 dz
N
D D
r= L and dr= dt
21, 27,
. Substituting into Equation A3,
J'IZD3 Ty . )
= yTidt
s d

. Clearing the pre-integral fraction on the right side

T, ¥ 1 8V 1
nD:
0

4 D " 4

vavg

where we have defined & =

b
fF’(x)dx

a

. Noting that d

we take the derivatives of both sides of equation (A6) to obtain

1 1 .
Z&(%fv dt,,)+ erv dE=7,72 dt,,

. Finally, rearranging

P EREL
4 4§ dt,
or
. 3 1 dln
}/w=§_+_ E
4 4dlnt,

8v D

4\ dz

=d[F(b)-F(a)|=F'(b) db-F'(a) da,

. dP
where T = (——Z) , E=—% and T, = —(——
w D
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