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I. Non-Newtonian Fluids - Overview 
A. Simple Classifications of Fluids 

1. Shear-Dependent Fluids 

a.   Newtonian
(obeys Newton's
Law of viscosity)

dv /dyx

µ

dv /dyx

! ! = µ dvx
dy

 
 

 
 

|    |

c.   Pseudoplastic
(molecules line up
once flow begins)

dv /dyx

!

dv /dyx

"

"  =  # dv
dy

x

d.   Dilatant
(particle suspensions
collide when flow
begins)

dv /dyx dv /dyx

"

n

OR with other
models

Can be fit with the
Power Law

!

 
 
Reminder:  Graduate texts write Newton’s Law as τ = -µ dvx/dy 

e. More complex models 
i) Powell-Eyring Model (based on Eyring's theories of the molecular “structure”  

of liquids) 

! 

" = A dvx
dy

+
1
B
sinh#1 1

C
• dvx
dy

$ 

% 
& 

' 

( 
)  

ii) Ellis Model (purely empirical) 
! =

1
A + B!C

• dvx
dy

 

iii) Reiner-Phillipoff Model (purely empirical) 

! 

" = A +
B – A

1+ (" /C)2
# 

$ 
% 

& 

' 
( 
dvx
dy

 

 
iv)  For each of these, the three arbitrary constants (A, B, and C) are adjusted to fit the 

data. 
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2. Time-Dependent Fluids 
 

!

time

Rheopectic

Thixotropic

motion causes aggregation
or unraveling of molecules

motion causes re-coiling or
fragmenting of molecules

{

{
 

a. The changes occur mostly within the first 60 seconds 
b. Description of these fluids is extremely difficult. 

3. Viscoelastic Fluids 
a. Exhibit elastic “recovery” from deformations which occur during flow 
b. Also exhibit “plastic” (permanent) deformation 
 

c. Modeled using simple spring-dashpot elements and combinations of those elements 

 Maxwell Element Kelvin or Voigt Element 
 
B. Observations 

1. Non-Newtonian behavior is usually seen when the fluid is composed of small carrier  
molecules and larger suspended molecules or particles. 
a. Bingham Fluids:  Coal slurries, grain slurries, sewage sludge 
b. Pseudoplastic Fluids:  Polymer melts, paper pulp suspensions, pigment suspensions 
c. Dilatant Fluids:  Starch suspensions, mica suspensions, quicksand 
d. Thixotropic Fluids:  Mayonnaise, drilling mud, paint, ink 
e. Rheopectic Fluids:  Gypsum suspensions in water, vanadium pentoxide sols 
f. Viscoelastic Fluids:  Polymeric liquids 
g. Other:  Yield Pseudoplastic Fluid:  Blood 
 

2. Non-Newtonian fluids exhibit laminar and turbulent flow regimes, with a transition  
between those regimes. 

3. Equations for Newtonian fluids can't be used, because there is no single value of  
“viscosity” for such fluids. 
e.g. Can’t calculate the Reynolds number using the Newtonian definition 
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4. We often talk about an “apparent viscosity” (η) where 
 ! = "

dvx
dy

 (1) 

a. For example for a power-law fluid 

 

! 

" = K dvx
dy

# 

$ 
% 

& 

' 
( 

n

 (2) 

 
so, for such a fluid 

 

! 

" = K dvx
dy

# 

$ 
% 

& 

' 
( 

n)1

 (3) 

 
b. The apparent viscosity varies with shear rate, as plotted on page 1. 

 

II. Describing Non-Newtonian Laminar Flow in Horizontal Cylindrical Pipes 
A. Describing the Wall Shear Stress (all fluids) 

1. As in Class 16, we can begin with the Equation of Motion to derive 

 

! 

"# rz =
1
2
P1 – P2
L

+ $gsin%
& 

' 
( 

) 

* 
+ r  (4) 

2. For horizontal pipes 

 

! 

"# rz =
r
2
P1 – P2
L

= – r
2
dP
dz

 (5) 

3. At the wall 

 

! 

"w =
D
4
dP
dz

 (6) 

(which has a negative value, because it acts in the –z direction) 

B. Velocity Profile and Flowrate 
1. For laminar flow, we could introduce the rheological equation into The Equation of  

Motion (or into Equation (5) above) and integrate to get vz(r). 
 

Example:  For a Power-Law fluid,  Çengel’s convention for shear stress gives  

! 

"# rz = K dvz
dr

n
= K "

dvz
dr

$ 

% 
& 

' 

( 
) 
n

 
 

•Combining with Equation (5), integrating, and applying the no-slip condition gives 

 

! 

vz =
"dP
dz

1
2K

# 

$ 
% 

& 

' 
( 

1
n n
n +1

R
n+1
n " r

n+1
n

# 

$ 

% 
% 

& 

' 

( 
(  (7) 

•The volumetric flow rate becomes 

 

! 

Q =
"dP
dz

D
4K

# 

$ 
% 

& 

' 
( 

1
n )nD3

8(3n +1)
 (8) 
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•And, finally (see the Appendices to these notes), 

 ! =
3n +1
2n +1

           and           " =
3(3n +1)2

(5n + 3)(2n +1)
 (9) 

2. For other types of non-Newtonian fluids, the math often becomes very complex. 
 
C. How can we apply these concepts to typical pipeflow data (-dP/dz vs. vavg)? 

A General Approach, Using Newtonian Fluids in Laminar Flow as a Model 
 

1. The velocity profile for a Newtonian fluid is 

 

! 

vz = vmax 1–
r2

R2
" 

# 
$ 

% 

& 
' = 2vavg 1–

r2

R2
" 

# 
$ 

% 

& 
'  (10) 

2. So the shear rate is 

 

! 

˙ " = – dvz
dr

= –2vavg – 2r
R2

# 

$ 
% 

& 

' 
( =

4vavgr
R2  (11) 

3. At the wall 

 ˙ ! w =
4vavg
R

=
8vavg
D

 (12) 
 

4. For a Newtonian fluid, a short-hand way to write Newton’s Law is 
 !w = µ ˙ " w  (13) 

so plotting τw vs. 
8vavg
D

 gives a straight line of slope = µ 

5. But 

 

! 

"w =
D
4
dP
dz

  (from Equation 6) and 
 

˙ ! w =
8vavg
D

   (from Equation 12) 
 

So plotting – D
4
dP
dz

 vs 
8vavg
D

 for various diameters gives a straight line of slope = µ 

6. Non-Newtonian fluids can be plotted on that same plot (gives a generalized way of  
representing all fluids in laminar flow). 

 

D
4

!dP
dz

8vavg
D

Newtonian

Dilatant

Pseudoplastic

Bingham

( )
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D. How do we design flow systems for a Power-Law fluid in laminar flow? 
 

1. From Equation 8, 

! 

˙ V = "dP
dz

D
4K

# 

$ 
% 

& 

' 
( 

1
n )nD3

8(3n +1)
 

Solving for pressure drop: 

! 

"dP
dz

= ˙ V 8(3n +1)
#nD3

$ 

% & 
' 

( ) 

n 4K
D

* "
P2 " P1

L
 

 

But the mechanical energy equation uses ∆P/ρ, so 

! 

P2 " P1

#
=

P2 " P1

L
$ 

% 
& 

' 

( 
) 

L
#

= " ˙ V 8(3n +1)
*nD3

+ 

, - 
. 

/ 0 

n 4KL
D#

 

 
2. Finally, from the mechanical energy equation for a horizontal pipe, 

! 

P2 " P1
#

= " w f  

 
3. So for laminar pipe flow of a power-law fluid, 

 

! 

w f = ˙ V 8(3n +1)
"nD3

# 

$ % 
& 

' ( 

n 4KL
D)

 

 
which can be used with the mechanical energy equation for any applicable piping system. 
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Appendix 1 – β for a Power-Law Fluid in Laminar Pipe Flow 
 

! 

Q = v dA = "
dP
dz

D
4K

# 

$ 
% 

& 

' 
( 

1
n )nR3

3n +1**  (see Equation 8 of these notes) 

! 

v2 dA =
"dP
dz

1
2K

# 

$ 
% 

& 

' 
( 

1
n n
n +1

R
n+1
n " r

n+1
n

# 

$ 

% 
% 

& 

' 

( 
( 

) 

* 

+ 
+ 
+ 

, 

- 

. 

. 

. 
////

2

r dr d0 (see Equation 7 of these notes) 

 

! 

= 2" #dP
dz

1
2K

$ 
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& 

' 

( 
) 

2
n n
n +1
$ 

% 
& 

' 

( 
) 
2

R
n+1
n # r

n+1
n

$ 

% 

& 
& 

' 

( 

) 
) 

0

R

* r dr  

where 

 

! 

R
n+1
n " r

n+1
n

# 

$ 

% 
% 

& 

' 

( 
( 

2

0

R

) r dr = R2+ 2n " 2R1+ 1n r1+ 1n + r2+ 2n
# 
$ 
% 

& 
' 
( r dr

0

R

)  

 

! 

= R2+ 2n r
2

2
" 2R1+ 1n r

3+ 1n

3+ 1
n

+
r4+ 2n

4 + 2
n

# 

$ 

% 
% 

& 

' 

( 
( 
0

R

 

 

! 

=
R4+ 2n

2
+
2R4+ 2n

3+ 1
n

+
R4+ 2n

4 + 2
n

= R4+ 2n 1
2
"
2n
3n +1

+
n

4n + 2
# 

$ % 
& 

' ( 
 

which, after some math, gives 

 

! 

= R4+ 2n
n +1( )2

3n +1( ) 4n + 2( )
 

So 

! 

v2 dA ="" 2# $dP
dz

1
2K

% 

& 
' 

( 

) 
* 

2
n n
n +1
% 

& 
' 

( 

) 
* 
2
R4+ 2n

n +1( )2

3n +1( ) 4n + 2( )
 

 

! 

= "R4 #dP
dz

D
4K

$ 

% 
& 

' 

( 
) 

2
n n2

3n +1( ) 2n +1( )
 

 

Finally,  

! 

" = A
v2 dA##
v dA##[ ]2

= $R2
$R4 %dP

dz
D
4K

& 

' 
( 

) 

* 
+ 

2
n n2

3n +1( ) 2n +1( )

%
dP
dz

D
4K

& 

' 
( 

) 

* 
+ 

2
n $2n2R6

3n +1( )2

=
3n +1
2n +1
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Appendix 2 – α for a Power-Law Fluid in Laminar Pipe Flow 
 

! 

Q = v dA = "
dP
dz

D
4K

# 
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% 

& 
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1
n )nR3

3n +1**  (see Equation 8 of these notes) 

! 

v3 dA =
"dP
dz

1
2K
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n
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) 
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. 
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3

r dr d0  (see Equation 7 of these notes) 

 

! 

= 2" #dP
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1
2K

$ 

% 
& 

' 

( 
) 

3
n n
n +1
$ 

% 
& 

' 

( 
) 
3

R
n+1
n # r

n+1
n
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where 

 

! 

R
n+1
n " r

n+1
n

# 

$ 

% 
% 

& 

' 

( 
( 

3

0

R

) r dr = R3+ 3n " 3R2+ 2n r1+ 1n + 3R1+ 1n r2+ 2n " r3+ 3n
# 
$ 
% 

& 
' 
( r dr

0

R
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! 

= R3+ 3n r
2

2
" 3R2+ 2n r

3+ 1n

3+ 1
n

+ 3R1+ 1n r
4+ 2n

4 + 2
n
"
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n

# 

$ 
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% 
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' 

( 
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0

R

 

 

! 

=
R5+ 3n

2
"
3R5+ 3n

3+ 1
n

+
3R5+ 3n

4 + 2
n
"
R5+ 3n

5 + 3
n

 

 

! 

= R5+ 3n 1
2
"

3n
3n +1

+
3n

4n + 2
"

n
5n + 3

# 

$ % 
& 

' ( 
 

which, after some math, gives 

 

! 

= R5+ 3n
3 n +1( )3

3n +1( ) 4n + 2( ) 5n + 3( )
 

So 

! 

v3 dA ="" 2# $dP
dz
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2K
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( 
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3
n 3n3
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Finally, 

! 
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= $2R4
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I. More On Non-Newtonian Laminar Flow in Horizontal Cylindrical Pipes 
A. Determining Values of the Rheological Parameters 
 

1. We can measure flow rate and pressure drop through a pipeline... So how do we 
determine the values of rheological parameters? 

2. We can show (appendix for these notes) that, for all non-Newtonian fluids  
 

 

€ 

˙ γ w = ξ
3
4

+
1
4
d lnξ
d lnτw

 

 
 

 

 
  (1) 

 

where        

€ 

˙ γ w = −
dvz
dr

 

 
 

 

 
 
w

,   ξ =
8vavg
D

,  and   

€ 

τw =
D
4
−
dP
dz

 

 
 

 

 
  

 
3. Equation 1, called the Rabinowitsch-Mooney equation, works for most time-

independent non-Newtonian fluids in laminar flow in cylindrical pipes. 
 

a. From data of flow rate and pressure drop, ξ and τw can be calculated for each 
condition (data point) 

 

b. A plot of ln τw vs. ln ξ will produce 

€ 

d lnτw
d lnξ

 

which can be inserted into the right-hand bracket of Equation 1. 
 

c. The wall shear rate can then be determined for each data point. 
 

d. Equation 1 suggests that 
d ln τ w
d ln ξ

 provides important information. 

 
4. The values of rheologic parameters can also be found from plots involving τw and ξ . 

 

a. For Newtonian fluids, 
d ln τ w
d ln ξ

= 1 . 

i) Why is this so? 
Hint:   How does τw depend on ξ?  To find out... 

How does τw depend on 

€ 

˙ γ ? 
How does 

€ 

˙ γ  depend on ξ? 
˙ γ w = −

dvz
dr

=
8vavg
D

= ξ      (Now, you finish the story.) 

 
 
 
 
 
 
 

ii) So, what kind of plot of the data would tell us µ? 
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b. For Power-Law fluids, 

€ 

d lnτw
d lnξ

= n  

i)  Why is this so? 
Hint:   How does τw depend on ξ?  To find out... 

How does τw depend on 

€ 

˙ γ ? 
How does 

€ 

˙ γ  depend on ξ? 
 

€ 

τw = K −
dvz
dr

 

 
 

 

 
 
w

n

= K ˙ γ w
n  

€ 

˙ γ w =
τw
K
 

  
 

  

1 n

= −
dP
dz

D
4K

 

  
 

  

1 n

 

€ 

˙ V = −
dP
dz

D
4K

 

  
 

  

1 n
πnD3

8 3n +1( )
= ˙ γ w

πnD3

8 3n +1( )
 

€ 

˙ γ w =
8 3n +1( ) ˙ V 
πnD3 =

4 ˙ V 
πD2

8
D

3n +1
4n

=
8vavg

D
3n +1

4n
= ξ

3n +1
4n

 

 
(Now, you finish the story.) 
 
 
 
 
 
 
 
 
 
 

ii) So, what kind of plot of the data would tell us n? 
 
 
iii) Would all data sets (all pipe diameters, etc.) give the same value of n? 
 
 
iv) Once we know the value of n, can we determine the value of K? How? 
 
 
 
 
 
 
 
 
v) What are the units of K? 
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c. For other Non-Newtonians fluids, 

€ 

d lnτw
d lnξ

 may be a simple function, and we may be 

able to do the same kind of analysis to determine values of rheologic parameters. 
 
B. When Does Flow Become Non-Laminar? 

1. For Newtonian fluids:  when Reynolds Number (Dvρ/µ) > ~2100 
2. But, for non-Newtonian fluids, there is no “µ”. 
3. For  horizontal, cylindrical pipes, 
 

 
ΔP
ρ

= − f
L
D
v2

2
 (2) 

Rearranging 

 f = −
D
4
ΔP
L

8
ρv 2

= τw
8
ρv 2

 (3) 

4. For Power-Law Fluids 
a. By definition  

€ 

τw = K( ˙ γ w )n = K
8vavg
D

3n +1
4n

 

 
 

 

 
 

n

≈ K
8vavg
D

 

 
 

 

 
 

n

    (approximate derivation) (4) 

b. We can substitute into Equation 3 to obtain 

 

€ 

f ≈ K 8v
D

 

 
 

 

 
 
n 8
ρv2

 (5) 
 

c. Finally, if we assume that for laminar flow, f≈64/Re (from Newtonian fluid) 
 

 Re ≈ 64

K
8v
D

 
 

 
 

n 8
ρv2

≈
Dnρv2−n

K8n−1
 (6) 

 

d. It turns out that when this “Generalized” Reynolds number (for Power-Law Fluids) 
exceeds ~2100, the flow of Power-Law fluids departs from laminar behavior. 

 

8vavg
D

Turbulent
Region

Laminar
Region

− dP
dz

D
4

 

8vavg
D

Turbulent
Region

Laminar
Region

ln − dP
dz

D
4













ln
 

 

e. Caution: The location of the turbulent break-off point in the above graph varies 
with pipe diameter. 

 
5. For other kinds of fluids, Equations 4-6 can be re-derived for the particular fluid in 

question, resulting in a special formulation of the Reynolds number for that fluid. 
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II. Describing Non-Newtonian Turbulent Flow in Horizontal Cylindrical Pipes 
 
A. Empirical Friction-Factor Charts Are Used 

The following gives  fFanning = fDarcy/4   for   Power-Law Fluids. 

(From N. de Nevers, Fluid Mechanics, Addison Wesley, 1970.) 
 

n=1.0

Newtonian

n=0.8
n=0.6n=0.4

n=0.75

n=0.6n=0.53

500 1000 10 4 10 5
0.001

0.01

0.05

 
Reynolds number as defined by Equation 6 

 
B. The solid lines in the above graph are for slurries and some polymer solutions. 

(From the data of Dodge and Metzner, AIChE J. 5:189, 1959.) 
 
C. The dotted lines are for some polymer solutions and polymer melts, particularly those 

which show viscoelastic behavior (like rubber cement), which suppress turbulence 
(From the data of Shaver and Merrill, AIChE J. 5:181, 1959.) 
 
1. With these fluids, much less turbulence is seen, and friction is reduced. 
 
2. Apparently, the long molecules of these fluids absorb energy and damp out turbulent 

fluctuations. 
 
3. Tiny amounts (as little as 0.01 wt%) of such polymers in water reduce friction 50%. 
 
4. Such pressure-loss-reduction additives are commonly used in the industry (e.g. the 

petroleum industry). 
 
D. The friction factor from the above graph is used in a similar way as for Newtonian fluid 

(wf = 4f L/D v2/2, used in the mechanical energy equation as always). 
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Appendix - Derivation of the Rabinowitsch-Mooney Equation 
 

1. From the definition of the volumetric flow rate 

 

€ 

˙ V = v r dθ dr
0

2π

∫
0

R

∫ = 2π v r dr
0

R

∫  (A1) 

2. But x dy = xy − y dx∫∫ , and if we let dy = r dr  (so y = 1
2 r

2 ), then  

 

€ 

˙ V = 2π vr2

2 r= 0

r= R

– 1
2

r2dv
r= 0

r= R

∫
 

 
 
 

 

 
 
 

= −π r2dv
r= 0

r= R

∫  (A2) 

3. We can write this as 

 

€ 

˙ V = −π r2 dv
dr
 

 
 

 

 
  dr = π r2 ˙ γ  dr

0

R

∫
0

R

∫  (A3) 

4. From the last class,  

τrz = –
r
2
dP
dz

 and τw = –
D
4
dP
dz

 

so  
 r =

D
2
τ
τ w

 and dr =
D
2τw

dτ  (A4) 

5. Substituting into Equation A3, 

 

€ 

˙ V = πD3

8τw
3 ˙ γ  τ 2dτ

0

τw

∫  (A5) 

 

6. Clearing the pre-integral fraction on the right side 

 

€ 

˙ γ  τ 2dτ
0

τw

∫ =
8 ˙ V 
πD3 τw

3 =
1
4

8vavg

D
τw

3 =
1
4
ξτw

3  (A6) 

where we have defined  ξ ≡
8vavg
D

 

7. Noting that  

€ 

d ′ F (x)dx
a

b

∫
 

 
 
 

 

 
 
 

= d F(b) − F(a)[ ] = ′ F (b) db − ′ F (a) da,  

we take the derivatives of both sides of equation (A6) to obtain 

 

€ 

1
4
ξ(3τw

2  dτw ) +
1
4
τw

3  dξ = ˙ γ wτw
2  dτw  (A7) 

 

8. Finally, rearranging 

 

€ 

˙ γ w = ξ
3
4

+
1
4
dξ
ξ

τw
dτw

 

 
 

 

 
  (A8) 

or 

 

€ 

˙ γ w = ξ
3
4

+
1
4
d lnξ
d lnτw

 

 
 

 

 
  (A9) 

 

where        

€ 

˙ γ w = −
dvz
dr

 

 
 

 

 
 
w

,   ξ =
8vavg
D

,  and   

€ 

τw =
D
4
−
dP
dz

 

 
 

 

 
  


